On hereditarily self-similar $p$-adic analytic pro-$p$ groups
نویسندگان
چکیده
منابع مشابه
Analytic P-adic Cell Decomposition and P-adic Integrals
Roughly speaking, the semialgebraic cell decomposition theorem for p-adic numbers describes piecewise the p-adic valuation of p-adic polyno-mials (and more generally of semialgebraic p-adic functions), the pieces being geometrically simple sets, called cells. In this paper we prove a similar cell decomposition theorem to describe piecewise the valuation of analytic functions (and more generally...
متن کاملZETA FUNCTION OF REPRESENTATIONS OF COMPACT p-ADIC ANALYTIC GROUPS
Let G be a profinite group. We denote by rn(G) the number of isomorphism classes of irreducible n-dimensional complex continuous representations of G (so that the kernel is open in G). Following [20], we call rn(G) the representation growth function of G. If G is a finitely generated profinite group, then rn(G) < ∞ for every n if and only if G has the property FAb (that is, H/[H,H] is finite fo...
متن کاملp-adic Hurwitz groups
Herrlich showed that a Mumford curve of genus g > 1 over the p-adic complex field Cp has at most 48(g− 1), 24(g− 1), 30(g− 1) or 12(g− 1) automorphisms as p = 2, 3, 5 or p > 5. The Mumford curves attaining these bounds are uniformised by normal subgroups of finite index in certain p-adic triangle groups ∆p for p ≤ 5, or in a p-adic quadrangle group p for p > 5. The finite groups attaining these...
متن کاملSIMPLE p - ADIC GROUPS , II
0.1. For any finite group Γ, a “nonabelian Fourier transform matrix” was introduced in [L1]. This is a square matrix whose rows and columns are indexed by pairs formed by an element of Γ and an irreducible representation of the centralizer of that element (both defined up to conjugation). As shown in [L2], this matrix, which is unitary with square 1, enters (for suitable Γ) in the character for...
متن کاملCOHOMOLOGY OF NUMBER FIELDS AND ANALYTIC PRO-p-GROUPS
In this work, we are interested in the tame version of the Fontaine–Mazur conjecture. By viewing the pro-p-proup GS as a quotient of a Galois extension ramified at p and S, we obtain a connection between the conjecture studied here and a question of Galois structure. Moreover, following a recent work of A. Schmidt, we give some evidence of links between this conjecture, the étale cohomology and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Groups, Geometry, and Dynamics
سال: 2022
ISSN: ['1661-7207', '1661-7215']
DOI: https://doi.org/10.4171/ggd/641